NONSTATIONARY THERMAL STRESSES IN A
HOLLOW CYLINDER WITH HEAT FLUX ACTING
ON THE INSIDE SURFACE

L. E. Belousova UDC 539.32

Thermoelastic stresses in a long hollow cylinder are considered when a uniformly distri-
buted heat flux is applied to the inside surface and the outside surface is heat-insulated.

Calculation of the temperature and stress fields in the wall of a hollow cylinder with a short-dura-
tion heat flux applied to the inside surface is of practical interest — particularly for analysis of the ther-
malregime in the envelope of a tubular flashlamp [1].

An approximate solation has been given in [2] for the heat~conduction problem for a hollow cylinder;
the solution is convenient when the Fourier number is small. It applies to the case in which the tempera~
ture is maintained constant at both surfaces of the cylinder. An exact solution has been given in [3] for the
thermoelasticity problem for a hollow cylinder when there is convective heating of one surface and cooling
of the other; an approximate solution for the initial stage of heat transfer has been obtained in [4].

Below we obtain an approximate solution of the thermoelasticity problem for a hollow cylinder
heated on the inside surface by a heat flux; the solution may be used for small Fourier numbers and its
region of applicability is estimated by comparison with the results of an exact solution of the problem.

We consider a long hollow cylinder r; = r = R whose inside surface is acted on by a uniformly dis-
tributed heat flux having a power Q(r) per unit surface area. We neglect heat transfer from the outside
surface. The initial temperature of the cylinder is 0°C. The temperature distribution t(r, 7) can be
found from the heat-conduction equation |5, 6]
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Treating the problem as a quasi-static one, we can calculate the thermoelastic stresses in the hollow ey~
linder from the following formulas (see, for example, [3,7]):
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If the ends of the cylinder are free, then

0. {r, 1) =04{(r, 1) -0, (r, 1)
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If the ends are rigidly clamped,

Gz(r’ T)————OLEt(f, T)’,—V[O-B(h T) _i_o-r(r! T)}
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FO = N k = —, t* ) == — t y ,
2 e 9=t

we may represent the solution of the problem (1), (2) for Q) = A in the following form [8, 5]:
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where xy are the roots of the characteristic equation
Ty (0) Yy (k) — Y (%) Iy (kx) = O. ‘ (6)
Substituting (5) into (3), (4) and letting
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we obtain the following stress distributions:
o¥ (r, r):~—~—1~— <k2+ 1—3 i'TkZ i)—i— B X
b 8 (k—1) ' e 7 2 (k2 —1)
f2
r (k’-’ ~7> ® )
N I:I__ in (k r_“.) — 7*___\_.)_’"0 In k:l e J19(Xﬂ) Jy (k}n)

ro (B —1) e 52, 101 (1,) — I (k)] )

X J,Jl (kxn) YO (xll —r—) - Yl (kxn) Jn (xn _"’_ﬁ + 'i" A

I\ fo ‘ ‘ \ rO xnr

X [Yi (kx,) Jy (xn r_) — Jy (kx,) Y, (x“ r_”} exp (— x2Fo),

rU / N rO L

r? i 2

- 2 .

e o (1 %)= e pn ! ’3>1
Fr=gE \'" ) T ey | Eo R
I (k ;)J . E . 1 (%) Jy (kx,) « ()
r n=l x,zl - [ %('\‘n) - J% (kxn)]
Iy )
X [n (k) 4y (, —’—) — 1, V1 (x, _)J exp (— 2 Fo).
\ Ty Ty )

As we might expect, no radial stresses on the inside and outside surfaces of the hollow cylinder
appear in (8). Taking into account (6) and the familiar expression

r > . 2
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we obtain the following expressions from (7) for the tangential stresses on the surfaces of the cylinder:
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When the heat flux varies with time we can obtain the stresses from the expressions for the stresses
under constant heat flux by applying the Duhamel theorem (see, for example [7]).

It is difficult to use the exact solutions (5), (7)-(10) at the initial stage of development of the wall-
temperature field since series convergence is slow for small Fo. Thus we make use of a solution method
[5, 6] for problems of nonstationary heat conduction in which the solution is obtained in the plane of Laplace
transforms by means of asymptotic expansion of the transform into a rapidly converging series; after
going over to the domain of the original we find the temperature for small Fo. The solution of (1), (2) in
the Laplace-transform plane is
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0
Let us apply a Laplace transform with respect to the variable T to (3), (4). Substituting (11) into the
resulting expressions, we find the following for the stresses in the transform plane:
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The asymptotic expansions of the modified Bessel functions for large qr, which correspond to small
Fo values in the plane of originals, have the form
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In the _expansions (14), (15), wheren =0; 1; 1 = r/ry =k, we need only allow for the first term when 4n®
—11/8gr = 0.01. Inthis case 2qry(k—1) = 25(kk— 1)ry/r 40’ — 1| and we may assume that

exp [-—2gr, (k—D1 < 1. (16)

Substituting the expansions (14), (15) into (11)-(13) and taking the first term into account, we obtain
the following approximate expressions:
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The values of o(r, p) from (19) should vanish at the surfaces of the hollow cylinder. This condition
is satisfied identically on the outside surface; it will be satisfied on the inside surface if we take (16) into
account and neglect exp (—2qry(k—1)) in (19) as compared with unity.

Allowing for (16) and going over in (17), (18) from transforms to originals, we obtain the following
expressions for the temperature and the tangential stresses on the cylinder surfaces:

0 )= —=VFo, (R 9-4 l/ Fo jerfc (-2’%?%_;) (20)
0F (rgy T = t*(ry T (—1+4-¢), &= % ) (21)

o} (R, 1) = 2F0 —4 ]/FO Lerfc( )
inerfcz = joi”"‘ erfcEde, Perfcz =erfcz = T/% zSex;f (—E&Y dt. (22)

Tables of iPerfc are given in [5, 6, 9]. Estimates show that we may take Fo = 2 +107% for k = 1,2-1,5 to be
the upper boundary of the domain of applicability for the approximate formulas (20)-(22). On the upper
boundary the temperature and stress values obtained from (20)~-(22) are close to the corresponding values
from the exact formulas (5), (9), (10). Thus for Fo =2-1072, k =1.2 the approx1mate and exact formulas
give t* (ry = 0.159; 0.157; t*([R) = 0.061; 0.060; 09 (rg) = —0.069; —0. 066 09 (R) = 0.029; 0.030. For Fo =
2.107%, k = 1.5 we obtain t*(ry) = 0.159; 0.152; t*(R) = 0.001; 0.001; cp (ry) = 0.127; —0.120; o (R)

=0, 031 0.031. When the exact formulas were used to compute the temperature and stresses the roots of
(6) were taken from [10] and the Bessel functions from the tables of [11].

Neglecting € as compared with 1 in (21), we obtain the expression for the compressive surface stress
used in [1] in estimating the critical thermal load on the tube of a flashlamp. For a pulse length 7 < 1072
sec and typical dimensions of the quartz (¢ = 7.5-10"% cm?/sec) tube of the lamp (ro = 0.5 cm, k =1.3) we
have Fo =< 3°107% &= 1.5-10"2, Under these conditions the use of the approximation in [1] is justified.
As the pulse length increases, the second term of (21), which decreases the compressive surface stress,
has more and more influence. With allowance for the upper bound on Fo, when k = 1.5, 1.2 the value of
Fo = 107% may reach 0.20 and 0.57, respectively. Calculating the stresses from (21), (22) we see that
when Fo = 1072 the tensile stresses on the outside surface of the hollow cylinder are small compared with
the compressive stresses on the inside surface. When Fo = 1072, the tensile stresses become the same
in order of magnitude as the compressive stresses and are dangerous to such materials as quartz glass
whose tensile strength is many times less than the compressive strength.

Let us consider the temperature and stresses in a hollow cylinder for a variable short-term heat
flux. We approximate Q(r) by a polynomial of degree m,

%T) =0yt oT— ... T (23)
In the Laplace-transform plane the approximation (23) will have the form
S } m!
le(lp) —7(1-1— pz CLI—;—...—:'—;V;:; Apae (24)

We substitute (24) into (17), (18). Going from transforms to originals, we find the following expres-
sions for the temperature and the tangential stresses on the surfaces of the cylinder while taking (16) into
account:

#(y 0 =VFof, 1*(R, T):4l/E: 5, (25)
0F (r ¥ = — VFof- 2F°1 2 (26)
oF (R, 7)== QF" — /e /Fo 5, (27)
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When Q(r) = A, ay=1, @y =a,=... =ap = 0 according to (23). As we might expect, in this case*

(25)-(27) coincide with (20)-(22), respectively.

Let us compare the temperature and stress values from (25)-(27), Q(r) being approximated by the
polynomial (23), with the results obtained when the problem is solved by the exact expression for Q(r).
As an example, let us examine an exponentially varying flux

QO ey (_ i ) (28)

A T,

For @(p)/A =p+ 731, r = ry, taking (16) into account and going over to originals in (17), (18}, we

obtain the following solution:
1T,
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For V7/1, = 2 the values of j exp y’dy may be taken from [10]. For large V7/7, we have ¢ = (1/2)
0

v1o/7T [12]. We note that the temperature given by (29) for the inside surface of the cylinder coincides with

the surface temperature of a plate [13] heated by an exponential flux, a condition resembling (16) being

satisfied for the plate.

The heat flux Q(r) from (28) may be approximated by a polynomial having the form (23) with the aid
of a Maclaurin-series expansion of exp (—7/7;). In this case am = (—1)™M{1)/ (m !Tf}n) and the remainder
of the series is smaller in absolute value than [1/(m + 1)!1]¢r /7 o)™ +1 Since m = 5 for r/7y = 1.5, the error
is less than 2%. The t*(r,, 7)/v Fo values calculated from (25) for this case differ by no more than 2%
from the corresponding values from (29). Comparing (26) and (30), we see that for the given case the
values of y in (26) differ by no more than 1% from the corresponding values of 7y/T{1—exp (—{r/7))] in
(30). The temperature and stresses found with Q(r) being approximated by a polynomial agree well with
the results given by the exact expression for Q(r).

NOTATION

, a, a, v, F are the thermal conductivity coefficient, the thermal diffusivity coefficient, the co-
efficent of linear expansion, the Poisson ratio, and the elastic modulus;

*Since the polynomials £, v, 0 are linear in oy, we may use the proposed method to solve the inverse
problem and to find the heat flux Q(r) in the form (23) from the prescribed time dependence of the temper-
ature or the stresses. If at the times ry, ..., T, we know the corresponding m values of the temperature
on the inside surface of a hollow cylinder with prescribed A, a, then, substituting the pairs T Ty, ...,
Tm, t(Tm) into the first formula of (25), we arrive at a system of m linear equations for determining the
coefficients @A, ..., am-4A of (23). In like manner we can obtain the approximation coefficients in (23)
by using the second formula of (25) or {26), (27), respectively, if for a hollow cylinder with prescribed
geometric, thermophysical and mechanical characteristics at the times 7y, ..., Tm we know the values of
the temperature on the outside surface or the values of the stresses on one of the surfaces.
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09, Op, Oy are the tangential, radial, and axial stresses;

Jnx), Yn(x) are the n~th order Bessel functions of the first and second kinds, respectively;

In(x), Kn(x) are the n-th order modified Bessel functions of the first and second kinds, respec-
tively; |

I'(x) is a gamma function.
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